
Received 15-07-2025; Accepted 19-08-2025; Published 26-08-2025

Discovering a Single Neural Network Controller for Multiple Tasks
with Evolutionary Algorithms

Paolo Pagliuca paolo.pagliuca@istc.cnr.it
Institute of Cognitive Sciences and Technologies (ISTC)
National Research Council (CNR)
Via Giandomenico Romagnosi 18A, 00196, Roma, Italy

Corresponding Author: Paolo Pagliuca

Copyright © 2025 Paolo Pagliuca. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
Multi-Objective Optimization is a prominent research area, in which approaches for the
simultaneous solution of multiple objectives are proposed. The possibility to discover a set of
parameters optimizing all the goals can be achieved only if the considered problems are rather
trivial, while compromise solutions are generally discovered. Things become even more
complex when the set of parameters is used in opposite, and potentially conflicting, ways.
In this work, we compared some state-of-the-art Evolutionary Algorithms with regard to the
optimization of different conflicting objectives, by highlighting strengths and weaknesses
of the different approaches. In particular, we considered four benchmark problems — 4-bit
parity, double-pole balancing, grid navigation and test function optimization — to be solved
simultaneously. Our investigation identifies the algorithms leading to a better optimization.
In particular, three algorithms emerge as the most suitable methods for dealing with the
considered scenario. Notably, a relatively simple strategy is not significantly inferior to a
more sophisticated one. Moreover, we illustrate the solutions discovered by the different
methods to address the benchmark problems.

Keywords: Benchmarking, Evolutionary Algorithms, Multi-Objective Optimization, Neu-
ral Networks.

1. INTRODUCTION

Multi-Objective Optimization (MOO) [1], is a fascinating research field in which the ultimate goal
consists of discovering solutions fulfilling multiple, often conflicting, objectives simultaneously
[1]. Since the task is extremely complex or even impossible, compromise solutions are taken into
account, which are referred to as Pareto-optimal [2]. By definition, a Pareto-optimal solution is
“a set of ’non-inferior’ solutions in the objective space defining a boundary beyond which none
of the objectives can be improved without sacrificing at least one of the other objectives” [3]. An
illustration is provided in FIGURE 1.

Several techniques have been introduced to address MOO problems, such as Evolutionary Algo-
rithms (EAs) [4–6], Genetic Algorithms (GAs) [7–9], or swarm intelligence approaches [10–12].

322
Citation: Paolo Pagliuca. Discovering a Single Neural Network Controller for Multiple Tasks with Evolutionary Algorithms. Journal of

Journal of Artificial Intelligence and Autonomous Intelligence

Artificial Intelligence and Autonomous Intelligence. Research. 2025;2(2):20.
Page No.-322-348

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Figure 1: Explanation of Pareto optimality in a two-objective optimization (e.g., functions 𝑓1 and
𝑓2) scenario: non-dominated solutions (blue circles) are Pareto-optimal and lie on a
theoretical line (purple dotted curve) termed as Pareto front. Remaining solutions (orange
circles) are dominated by those belonging to the Pareto front.

For example, the authors in [13], applied GAs to aMOO scenario entailing a Supply Chain Network
(SCN) design problem. Their analysis indicates the feasibility of the approach in the context of
a Turkish company producing plastic products. In [14, 15], the OpenAI Evolutionary Strategy
(OpenAI-ES) [16], has been used to cope with a MOO problem requiring a swarm of AntBullet
robots [17], to simultaneously locomote and aggregate: the authors show that robots develop a good
locomotion capability, while aggregation is obtained very rarely. This underscores the difficulty of
optimizing both objectives at the same time. Specific algorithms have been developed to address
MOO with regard to test function optimization, such as Nondominated Sorting Genetic Algorithm
II (NSGA-II) [18], or Vector Evaluated Genetic Algorithm (VEGA) [19]. In particular, NSGA-II
[18] enables to discover optimized solutions for test functions defined in [19, 20], by exploiting non-
dominated sorting, diversity-preservation and elitism combined with typical mutation and crossover
operators from GAs. VEGA [19], represents a variant of a classic GA tailored for MOO scenarios.
Specifically, the solution evaluation produces a vector of fitness values, one for each objective,
and selection is made by choosing non-dominated solutions according to Pareto optimality. To this
end, the whole population is split into sub-populations (one for each objective) from which the best
individuals are selected. Finally, recombination and mutation of selected solutions allow to generate
the new population and ensure diversity.

An interesting field related to MOO involves the discovery of effective controllers to manage dif-
ferent problems belonging to the same class. For example, the authors in [21], propose an approach
called Shared Modular Policy (SMP) in which a global policy is used to control different modular
neural networks. In particular, each module is responsible for the control of a single actuator based
on current sensory readings and shared information in the form of current reward function. Exper-
iments performed on robot locomotors characterized by diverse morphologies (e.g., Halfcheetah,
Hopper, Humanoid, Walker2D) demonstrate the validity of the approach and a good generalization
capability on new morphologies. Another worthwhile example can be found in [22], in which
the authors propose an approach to discover a single controller for a class of dynamical systems.
Specifically, through in-context learning [23], the authors demonstrate that an effective controller

323

https://jaiai.org/ | August 2025 Paolo Pagliuca.

for a specific numerical problem can be immediately applied to a different problem within the same
class, with no need for fine-tuning.

This work is halfway between MOO and the evolution of a single controller for multiple problems.
In more detail, we present a comparative study of eight EAs — Generational Genetic Algorithm
(GGA) [24], Hill-Climbing Algorithm (HC) [25], a variant of HC called HC*, OpenAI-ES [16],
Separable Natural Evolution Strategies (sNES) [26], Stochastic Steady State [27], Stochastic Steady
State with Hill-Climbing (SSSHC) [28], and an adaptive variant of SSSHC called SSSHCa —
that must discover a single neural network controller capable to minimize simultaneously four
benchmark problems: (i) 4-bit parity, (ii) double-pole balancing, (iii) grid navigation and (iv)
test function optimization. Although using methods specifically tailored for MOO scenarios like
NSGA-II or VEGA could be rather intuitive, we decided instead to put emphasis on the usage of
general and relatively simple EAs [29], to assess how effective they are at sampling the search
space and discovering optimized solutions for the MOO scenario. Furthermore, existing studies
show that OpenAI-ES proved capable of dealing with MOO problems involving group of robots
[15, 30, 31]. Similarly, GGA has been used to effectively solve robotic MOO tasks [32, 33]. In
addition, the HC algorithm demonstrated its efficacy in optimizing multiple test functions [34, 35].
Our results clearly demonstrate that OpenAI-ES, SSSHC and SSSHCa outperform the othermethods
thanks to their propensity to reduce the size of weights, which is pivotal in the considered scenario.
Furthermore, detailed analysis of the performance on the individual benchmark problems reveal
that all the algorithms focus mainly on the minimization of test functions, which allows to quickly
optimize performance. Interestingly, SSSHC and SSSHCa best OpenAI-ES with respect to grid
navigation and test function optimization, while the opposite is true for 4-bit parity and double-pole
balancing. This implies that relatively simple strategies can perform similarly to more sophisticated
algorithms.

This research provides the following key contributions:

• a novel MOO scenario is presented, which entails benchmark problems like 4-bit parity,
double-pole balancing, grid navigation and test function optimization;

• a comparison of eight EAs on the defined MOO scenario is proposed, including both classic
methods (e.g., GGA, HC and SSS) and relatively novel and sophisticated algorithms (e.g.,
OpenAI-ES and sNES);

• two novel variants of existing methods, called HC* and SSSHCa, are introduced;

• OpenAI-ES, SSSHC and SSSHCa emerge as more effective than other methods at dealing
with the novel MOO scenario, which indicate that relatively simple algorithms like SSSHC
and SSSHCa are not inferior to a rather sophisticated method such as OpenAI-ES;

• SSSHC and SSSHCa outperform OpenAI-ES with respect to grid navigation and test function
optimization, while the opposite is true for 4-bit parity and double-pole balancing;

• OpenAI-ES, SSSHC and SSSHCa manage to reduce the size of weights/parameters, which is
paramount to discover effective solutions in the considered domain. In particular, OpenAI-
ES exploits historic information to effectively sample the search space, while SSSHC and
SSSHCa make use of single-gene mutations to discover truly adaptive modifications.

324

https://jaiai.org/ | August 2025 Paolo Pagliuca.

The paper starts with a thorough description of the benchmark problems, the considered EAs, the
neural network controller and the experimental settings in Section 2. Then, the outcomes are
illustrated in detail in Section 3, and a exhaustive discussion is provided in Section 4. Lastly,
Section 5 reports the main findings and potential future research ideas.

2. MATERIALS AND METHODS

2.1 Problems

2.1.1 4-bit parity

The first problem is the 4-bit parity task, which consists in calculating the number of 1-bits in the
input string and returning a value checking if the sum of 1-bits is even (output is 1) or odd (output
is 0). The problem is depicted in FIGURE 2, and is a commonly used task in the evolutionary
computation literature [36–38].

Figure 2: 4-bit parity problem: given a 4-bit input string, the objective is to return a 1/0 value when
the number of 1-bits is even/odd. It is worth noting that the parity value for a sequence
made of 0-bits only is 1.

Specifically, our evaluation is made by considering all the possible 4-bit input strings (i.e., 24 = 16)
and verifying the number of correct parity values returned. To this end, we design the following
fitness function (Eq. 1).

𝐹𝑝𝑎𝑟𝑖𝑡 𝑦 =
𝑁𝑠𝑡𝑟𝑖𝑛𝑔𝑠∑

𝑠=1
|𝑂𝑠 −𝑂𝑠 | (1)

325

https://jaiai.org/ | August 2025 Paolo Pagliuca.

In Eq. 1, the symbol 𝑂𝑠 is the expected parity output for the input string 𝑠, 𝑂𝑠 indicates the output
returned by the controller and 𝑁𝑠𝑡𝑟𝑖𝑛𝑔𝑠 represents the number of considered 4-bit input strings
(𝑁𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 16).

2.1.2 Double-pole balancing

The second problem is the double-pole balancing task [39], i.e. a widespread benchmark to assess
an algorithm performance as demonstrated by the large body of literature in the field [27, 40–44].
The task involves the presence of two poles placed on the top of a wheeled mobile cart, which
has to move properly to avoid poles falling (see FIGURE 3). TABLE 1, reports the parameters
characterizing the task. The validity range of the cart position 𝑥 is [−2.4, 2.4]𝑚 (i.e., the length of
the track), while the validity range of the pole angles 𝜃1 and 𝜃2 is [−36, 36]◦.

Figure 3: Double-pole balancing problem: a wheeled mobile cart (orange rectangle) has to move
on a horizontal surface (light blue rectangle) in order to keep two poles (green rectangles)
upright.

Table 1: Parameters characterizing the double-pole balancing problem. The track extremes are
placed at -2.4 m and 2.4 m, respectively. We denote the absence of information with
the symbol “-”.

Parameter Length Mass
Track 4.8 m -
Cart - 1.0 kg

Long pole 1.0 m 0.5 kg
Short pole 0.1 m 0.05 kg

The objective function for this task is formulated as in Eq. 2.

𝐹𝑑𝑝𝑜𝑙𝑒 =
1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠

𝑁𝑡𝑟𝑖𝑎𝑙𝑠∑
𝑖=1

𝑁𝑠𝑡𝑒𝑝𝑠 − 𝑛𝑠𝑡𝑒𝑝𝑠 (𝑖) (2)

326

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Symbol 𝑁𝑠𝑡𝑒𝑝𝑠 denotes the length of a trial (𝑁𝑠𝑡𝑒𝑝𝑠 = 1000), 𝑛𝑠𝑡𝑒𝑝𝑠 (𝑖) in Eq. 2 represents the
number of steps both poles are kept upright by the cart during the trial 𝑖, whereas 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 indicates
the number of trials. An episode is prematurely ended in two cases:

• the cart goes out of the track (|𝑥 | > 2.4𝑚);

• at least one of the poles is falling (|𝜃 𝑗 | > 36◦, with 𝑗 = 1, 2).

In this work, we focus on the “Fixed Initial States condition” version of the problem [27, 28], in
which the evaluation of possible solutions is averaged over 8 trials (𝑁𝑡𝑟𝑖𝑎𝑙𝑠 = 8). In more detail, at
each trial the state variables 𝜉𝑖 (with 𝑖 = 1 . . . 6), which encode respectively position and velocity
of the cart and the two poles, are initialized according to TABLE 2.

Table 2: Initialization of the state variables 𝜉1 . . . 𝜉6 in each trial of the double-pole balancing
problem. Variables are defined as follows: 𝜉1 = 𝑥; 𝜉2 = ¤𝑥; 𝜉3 = 𝜃1; 𝜉4 = ¤𝜃1; 𝜉5 = 𝜃2;
𝜉6 = ¤𝜃2.

𝑇𝑟𝑖𝑎𝑙 𝜉1 𝜉2 𝜉3 𝜉4 𝜉5 𝜉6
1 -1.944 0 0 0 0 0
2 1.944 0 0 0 0 0
3 0 -1.215 0 0 0 0
4 0 1.215 0 0 0 0
5 0 0 -0.10472 0 0 0
6 0 0 0.10472 0 0 0
7 0 0 0 -0.135088 0 0
8 0 0 0 0.135088 0 0

Further details on the system dynamics can be found in [27, 28, 39].

2.1.3 Grid navigation

The third problem is a grid navigation task in which an agent has to reach the central location (target)
of a square grid starting from one of the four corners (see FIGURE 4). The grid has size 𝐿𝐺 × 𝐿𝐺 ,
with 𝐿𝐺 = 501. Similarly to the afore-described problems, grid navigation represents a largely used
benchmark to evaluate genetic and evolutionary algorithms [45–47].

The objective function for this problem is expressed as in Eq. 3.

𝐹𝑔𝑟𝑖𝑑 =
1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠

𝑁𝑡𝑟𝑖𝑎𝑙𝑠∑
𝑖=1

𝑑𝑡𝑎 (𝑖) (3)

In Eq. 3, the symbol 𝑑𝑡𝑎 (𝑖) indicates the final agent-target distance at the trial 𝑖 and 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 counts
the number of trials. Since there are four possible starting locations (i.e., the corners of the grid),

327

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Figure 4: Grid navigation problem: an agent (red circle) has to navigate in a grid world. The agent
starts from one of four possible initial locations (yellow squares) and its goal is to reach
the target location (red square). The agent can move left, up, right or bottom.

we set 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 = 4. The target-agent distance 𝑑𝑡𝑎 (𝑖) is computed by counting the minimum number
of cells the agent has to visit in order to arrive at the target, and is defined in Eq. 4.

𝑑𝑡𝑎 (𝑖) = |𝑡𝑥 (𝑖) − 𝑎𝑥 (𝑖) | + |𝑡𝑦 (𝑖) − 𝑎𝑦 (𝑖) | (4)

The symbols (𝑡𝑥 (𝑖), 𝑡𝑦 (𝑖)) and (𝑎𝑥 (𝑖), 𝑎𝑦 (𝑖)) denote, respectively, the location of the target and the
agent during the trial 𝑖.

The agent can move one cell either horizontally (i.e., left and right) or vertically (i.e., up and down)
within the grid. A trial prematurely stops if the action of the agent causes its exit from the grid.

2.1.4 Test function optimization

The last problem is test function optimization, which constitutes a common benchmark for evaluat-
ing optimization methods [18, 48–50]. In particular, we consider the Ackley, Griewank, Rastrigin,
Rosenbrock and Sphere functions. Eqs. 5 - 9 provide the definition of the considered functions, in
which the input sequence is identified with the symbol 𝑣 and its length with the symbol 𝑛.

𝐹𝑎𝑐𝑘𝑙𝑒𝑦 = −20 exp ©­«−0.2

√√
1
𝑛

𝑛∑
𝑖=1

𝑣𝑖2
ª®¬ − exp

(
1
𝑛

𝑛∑
𝑖=1

cos(2𝜋𝑣𝑖)
)
+ 20 + exp(1) (5)

𝐹𝑔𝑟𝑖𝑒𝑤𝑎𝑛𝑘 = 1 + 1
4000

𝑛∑
𝑖=1

𝑣𝑖
2 −

𝑛∏
𝑖=1

cos
(
𝑣𝑖√
𝑖

)
(6)

328

https://jaiai.org/ | August 2025 Paolo Pagliuca.

𝐹𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 =
𝑛∑
𝑖=1

(𝑣𝑖2 − 10 cos(2𝜋𝑣𝑖) + 10) (7)

𝐹𝑟𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 =
𝑛−1∑
𝑖=1

(100(𝑣𝑖+1 − 𝑣𝑖
2)2 + (𝑣𝑖 − 1)2) (8)

𝐹𝑠𝑝ℎ𝑒𝑟𝑒 =
𝑛∑
𝑖=1

𝑣𝑖
2 (9)

The fitness function for test function optimization is defined as the sum of the single functions
according to Eq. 10.

𝐹 𝑓 𝑢𝑛𝑐𝑡 = 𝐹𝑎𝑐𝑘𝑙𝑒𝑦 + 𝐹𝑔𝑟𝑖𝑒𝑤𝑎𝑛𝑘 + 𝐹𝑟𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 + 𝐹𝑟𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘 + 𝐹𝑠𝑝ℎ𝑒𝑟𝑒 (10)

2.2 Performance

To assess the overall performance of the discovered solutions with respect to the considered MOO
scenario, we adopt the fitness function described in Eqs. 11 - 12:

min 𝐹 (11)

𝐹 = 𝑤𝑝𝑎𝑟𝑖𝑡 𝑦𝐹𝑝𝑎𝑟𝑖𝑡 𝑦 + 𝑤𝑑𝑝𝑜𝑙𝑒𝐹𝑑𝑝𝑜𝑙𝑒 + 𝑤𝑔𝑟𝑖𝑑𝐹𝑔𝑟𝑖𝑑 + 𝑤 𝑓 𝑢𝑛𝑐𝑡𝐹 𝑓 𝑢𝑛𝑐𝑡 (12)

As concerns Eq. 12, we use coefficients equal to 1 for each objective (i.e., 𝑤𝑝𝑎𝑟𝑖𝑡 𝑦 = 𝑤𝑑𝑝𝑜𝑙𝑒 =
𝑤𝑔𝑟𝑖𝑑 = 𝑤 𝑓 𝑢𝑛𝑐𝑡 = 1). Despite the simplicity of the approach, our design choice alleviates from the
burden of choosing tailored values, which requires expertise and may lead to different evolutionary
paths.

2.3 Evolutionary Algorithms

The EAs employed in this work are described in the next sections. A comprehensive schematic is
provided in FIGURE 5. Further details about the different algorithms can be found in [16, 24–28].

We emphasize that the term “solution” represents a set of floating-point values (also called “genes”)
directly encoding the parameters (i.e., biases and connection weights) of the controller that must be
evolved.

329

https://jaiai.org/ | August 2025 Paolo Pagliuca.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Schematic of the considered EAs. (a) GGA; (b) HC; (c) HC*; (d) OpenAI-ES; (e) sNES;
(f) SSS; (g) SSSHC; (h) SSSHCa.

2.3.1 GGA

The Generational Genetic Algorithm (GGA) [24] is a pioneering method to evolve solutions capable
of adapting to dynamic environments [51, 52]. Moreover, it has been largely used in collective
domains like Swarm Robotics [53–56] or Multi-Agent Systems (MASs) [57–61], as well as for
problems involving single agents [62–65].

The algorithmworks according to the schematic provided in FIGURE 5-(a) and evolves a population
of candidate solutions. Each solution undergoes an evaluation process returning a fitness value
rating its effectiveness. After the entire population has been evaluated, the best 𝑁𝑟 solutions are
selected for reproduction, each one generating 𝑁𝑜 offspring through mutation and asexual crossover
operators. Moreover, selected solutions are retained in the population through elitism. This iterative
process aims to enhance the efficacy of solutions during evolution.

2.3.2 HC and HC*

The Hill-Climbing (HC) algorithm [25] is an optimization technique working through local search
refinements. Differently from classic population methods like GGA or SSS, HC considers a pool
of individuals that are evolved independently. Specifically, at each iteration, individuals generate
one offspring each and both are evaluated. The selection process takes into account each pair
(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔) and retains the best performing solution within the pool of individuals.
For each individual, offspring is generated through mutation or asexual crossover. The HC algo-
rithm is shown in FIGURE 5-(b).

330

https://jaiai.org/ | August 2025 Paolo Pagliuca.

HC* is a variant of HC in which the offspring creation is made through single-gene mutations
(see the schematic in FIGURE 5-(c)). Although the mechanism theoretically ensures the discovery
of truly adaptive modifications, there is no guarantee that solutions are progressively improved,
especially when only a gene at a time is mutated.

2.3.3 OpenAI-ES

The OpenAI Evolutionary Strategy (OpenAI-ES) [16] is a relatively novel technique that achieved
competitive results in problems like Atari games [16], classic control [66, 67], competitive co-
evolution [68], robot locomotion [16, 66, 69] and swarm robotics [30, 31, 70]. Differently from
a traditional EA, OpenAI-ES evolves a single solution termed “centroid”. In particular, at each
iteration of the evolutionary process, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 samples are extracted from a Gaussian distribution
and a set of solutions are derived according to Eq. 13.

𝑠 →
{
𝑧+ = 𝑐 + 𝜎 × 𝑠

𝑧− = 𝑐 − 𝜎 × 𝑠
(13)

In Eq. 13, the symbol 𝑠 represents the generic sample, 𝑐 denotes the centroid, 𝑧+ and 𝑧− indicate the
solutions that undergo evaluation, while 𝜎 is the mutation rate.

Once the pool of solutions has been evaluated, a fitness ranking is used to estimate the gradient
of the expected fitness function. Finally, the centroid is updated through Adam [71], a widespread
optimizer keeping historical information to drive the search process towards solutions that are more
likely to be effective. A schematic of OpenAI-ES is shown in FIGURE 5-(d). Differently from
existing works, here OpenAI-ES does not exploit weight decay [72], since reducing the size of
weights represents a clear advantage in the considered MOO scenario.

2.3.4 sNES

The Separable Natural Evolution Strategies (sNES) algorithm [26] is a variant of the Exponential
Natural Evolution Strategies (xNES) [44] that does not compute any covariance matrix. Instead,
sNES calculates the variance for each gene separately, hence allowing the method to better scale
with increasing sizes of the search space [66]. In particular, sNES has been successfully employed
in test function optimization [26], double-pole balancing [44, 73], car racing games [73], swarm
robotics [73] and robot locomotion [66]. The schematic of sNES is reported in FIGURE 5-(e). A
detailed description of sNES can be found in [26, 44].

2.3.5 SSS

The Stochastic Steady State (SSS) [27] is an EA that found applications in problems like double-
pole balancing [27, 28, 73], swarm robotics [73, 74], car racing games [73] and robot locomotion
[75]. The algorithm differs from GGA with respect to the reproduction and selection process: at
each iteration, each solution in the population (parent) generates one offspring through mutation and

331

https://jaiai.org/ | August 2025 Paolo Pagliuca.

asexual crossover. Then, both parents and offspring are evaluated and the best 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 solutions
are retained and form the next population. This iterative process allows SSS to improve performance
during evolution. FIGURE 5-(f) provides a schematic of the operation of SSS.

2.3.6 SSSHC and SSSHCa

The Stochastic Steady State with Hill-Climbing (SSSHC) [28] is a memetic algorithm [76–78] com-
bining SSS with a Hill-Climbing algorithm [25] seeking to further refine the solution performance.
SSSHC proves successful with regard to problems such as 5-bit parity, double-pole balancing and
test function optimization [28, 49]. Specifically, for the experiments reported here, we used the
variant introduced in [49].

The operation of SSSHC follows the one of SSS, but a refinement phase is added after selection:
each selected solution undergoes 𝑁𝑟𝑒 𝑓 𝑠 iterations (with 𝑁𝑟𝑒 𝑓 𝑠 = 5 as in [49]) in which a single-
gene mutation is applied and the modified solution is retained only if its performance improves. A
description of SSSHC is illustrated in FIGURE 5-(g).

Moreover, we designed an adaptive variant of SSSHC, called SSSHCa, in which the parameter
𝑁𝑟𝑒 𝑓 𝑠 adapts during evolution based on the number of non-negative single-gene mutations discov-
ered during the refinement process (see FIGURE 5-(h)). Specifically, we compute the percentage
of non-negative mutations 𝛼𝑚 according to Eq. 14.

𝛼𝑚 =
𝑁+
𝑚

𝑁𝑚
(14)

where the symbol 𝑁+
𝑚 and 𝑁𝑚 indicate, respectively, the number of non-negative mutations and the

total number of mutations performed during the refinement process.

The current value of 𝛼𝑚 is compared with the previous stored value (denoted with 𝛼̄𝑚), and 𝑁𝑟𝑒 𝑓 𝑠

is updated according to Eq. 15. To avoid numerical issues, we constrained the parameter 𝑁𝑟𝑒 𝑓 𝑠 in
the range [1, 25]. As for SSSHC, 𝑁𝑟𝑒 𝑓 𝑠 has been initially set to 5.

Δ𝑁𝑟𝑒 𝑓 𝑠 =


+1 if 𝛼𝑚 > 𝛼̄𝑚

0 if 𝛼𝑚 = 𝛼̄𝑚

−1 if 𝛼𝑚 < 𝛼̄𝑚

(15)

2.4 Controller

As a single controller for the considered problems, we used a recurrent neural network [79] formed
by 4 inputs, an internal layer of 10 neurons, and 1 output. Bias is applied to internal and output
neurons, which activate based on the tanh function. The information the input and output neurons
encode depending on the specific problem is listed here below (see also TABLE 3).

332

https://jaiai.org/ | August 2025 Paolo Pagliuca.

• 4-bit parity: the inputs represent the bits of the string that has to be checked, while the output
is the parity value associated to the string;

• double-pole balancing: the inputs encode normalized values for the cart position (𝑥) and pole
angles (𝜃1 and 𝜃2), and an alert signal that activates if either the cart approaches track edges
(|𝑥 | > 2𝑚), or the poles are almost falling (|𝜃 𝑗 | > 30◦, with 𝑗 = 1, 2). The output represents
the force that will be exerted to the cart;

• grid navigation: the inputs are the normalized locations of the agent ((𝑎𝑥 , 𝑎𝑦)) and the target
((𝑡𝑥 , 𝑡𝑦)), whereas the output indicates the motion direction (i.e., left, up, right or bottom).

Regarding test function optimization, the connection weights of the neural network constitute the
input vector 𝑣 used to compute the functions in Eq. 5 - 9. Therefore, not only does the controller
have to optimize simultaneously four problems exhibiting different properties, but it also has to
address them in potentially conflicting ways. In fact, the latter problem requires to minimize the
size of connection weights, which could prevent the discovery of effective solutions for the other
problems.

Table 3: Encoding of the input (𝐼1, 𝐼2, 𝐼3, 𝐼4) and output (𝑂1) neurons used for 4-bit parity, double-
pole balancing and grid navigation problems. Symbols are defined as follows: concerning
4-bit parity, 𝑏𝑖𝑡 𝑗 (with 𝑗 = 1 . . . 4) states for the generic bit of the input string, whereas
𝑛1−𝑏𝑖𝑡𝑠 indicates the network output used to check parity. As regards double-pole
balancing, 𝑥 refers to the cart position, 𝜃1 and 𝜃2 denote the angle of the long and short
poles, respectively, and 𝑎𝑙𝑒𝑟𝑡 is a flag indicating whether the trial might prematurely be
stopped because either the cart is going out of the track (|𝑥 | > 2) or the pole angles are
above 30◦, while 𝑓 𝑜𝑟𝑐𝑒 is the force applied to the cart that determines its motion. Lastly,
with respect to grid navigation, the symbols (𝑎𝑥 , 𝑎𝑦) and (𝑡𝑥 , 𝑡𝑦) represent, respectively,
the position of the agent and of the target locations, 𝐿𝐺 is the grid size and 𝑑𝑖𝑟 is the
direction of the agent in the grid (with 𝑑𝑖𝑟 ∈ [𝑙𝑒 𝑓 𝑡, 𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛]).

Problem 𝐼1 𝐼2 𝐼3 𝐼4 𝑂1
4-bit parity 𝑏𝑖𝑡1 𝑏𝑖𝑡2 𝑏𝑖𝑡3 𝑏𝑖𝑡4 𝑛1−𝑏𝑖𝑡𝑠

Double-pole balancing 𝑥
4.8

𝜃1
0.52

𝜃2
0.52 alert 𝑓 𝑜𝑟𝑐𝑒

Grid navigation 𝑎𝑥
𝐿𝐺−1

𝑎𝑦

𝐿𝐺−1
𝑡𝑥

𝐿𝐺−1
𝑡𝑦

𝐿𝐺−1 𝑑𝑖𝑟

2.5 Simulator and Experimental Settings

We employed he Framework for Autonomous Robotics Simulation and Analysis (FARSA) [80]
tool, since it found applications in similar experimental studies [27, 28, 49]. Moreover, it has been
successfully used also in robotic scenarios [65, 74, 81, 82].

The considered EAs have been compared by running 30 replications of the experiments, and evo-
lution lasts 109 evaluation steps. TABLE 4 reports a list of all parameters.

333

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Table 4: List of parameter settings used for the different algorithms.

Parameter Symbol GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
Number of replications 𝑁𝑟𝑒𝑝𝑠 30

Number of evaluation steps 𝑁𝑒𝑣𝑎𝑙𝑠 109

Population size 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 100 50 1 50
Number of reproducing solutions 𝑁𝑟 10 -

Number of offspring generated by each solution 𝑁𝑜
𝑃𝑜𝑝𝑆𝑖𝑧𝑒

𝑁𝑟
− 1 -

Elitism 𝐸𝑙𝑖𝑡𝑖𝑠𝑚 Yes -
Mutation rate 𝑀𝑢𝑡𝑅𝑎𝑡𝑒 0.05 0.02 Adaptive based on variance 0.05
Crossover rate 𝐶𝑟𝑜𝑠𝑠𝑅𝑎𝑡𝑒 0.1 - 0.1
Learning rate 𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑡𝑒 - 0.01 -

Number of samples 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 - 20 4 + b3 × ln(𝑛)c -
Number of refinement iterations 𝑁𝑟𝑒 𝑓 𝑠 - 5 Adaptive based on 𝛼𝑚

Weight range 𝑤𝑟 [−5.0, 5.0]

3. RESULTS

The performance comparison is shown in TABLE 5, FIGURE 6 and FIGURE 7. Clearly, OpenAI-
ES, SSSHC and SSSHCa strongly outperform GGA, HC, HC*, sNES and SSS (Kruskal-Wallis H
test, 𝑝 < 10−6, see TABLE 6), which indicates their capability to discover more effective solutions
for the considered MOO scenario. As can be seen in FIGURE 6, OpenAI-ES quickly reduces the
fitness in the first 108 evaluation steps and then almost stabilizes after 2×108 evaluation steps. HC*,
SSSHC and SSSHCa have a slower convergence and stabilize after 4×108 evaluation steps, although
they reach different performance levels. The sNES algorithm immediately reduces performance, but
does not manage to further improve during evolution. Conversely, the fitness curves of GGA, HC
and SSS show a slower drop than other methods, which prevents them from further optimization.

Notably, OpenAI-ES, SSSHC and SSSHCa have similar performance (Mann-Whitney U test with
Bonferroni correction, 𝑝 > 0.05 for each pair of comparisons, see also TABLE 6). Therefore, rela-
tively simple strategies like SSSHC and SSSHCa are not inferior to a more sophisticated algorithm
like OpenAI-ES, which exploits historical information to channel the search in the space of possible
solutions. By looking at the outcomes reported in FIGURE 7, OpenAI-ESmanages to find solutions
with performance below 1000 (see bottom outliers in FIGURE 7), while SSSHC and SSSHCa do
not reach similar performance levels.

HC* strongly outperforms HC (Mann-Whitney U test, 𝑝 < 10−6, see also TABLE 6). This implies
that single-gene mutations allow the former method to improve performance, since these modifi-
cations are truly adaptive. Conversely, the exploration process of HC through random mutations
over multiple genes or asexual crossover prevents the method from discovering effective solutions,
particularly with respect to test function optimization (see TABLE 7).

Table 5: Fitness analysis of the different algorithms. Data is the average of 30 replications of the
experiments. Best performance is reported in bold.

GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
2915.823 [206.120] 4342.209 [221.425] 1715.914 [40.453] 1291.433 [268.231] 1788.938 [28.329] 2581.040 [117.146] 1423.723 [57.654] 1420.432 [45.443]

We corroborate our results by delving into the fitness achieved by the different algorithms with
regard to the specific problems. As highlighted in FIGURE 8 and TABLE 7, OpenAI-ES achieves
the best results in the 4-bit parity and double-pole balancing problems, while SSSHCa bests other
algorithms with respect to grid navigation and test function optimization. In particular, OpenAI-ES,

334

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Figure 6: Performance of GGA, HC, HC*, OpenAI-ES, sNES, SSS, SSSHC and SSSHCa during
evolution. The shaded areas are bounded in the range [𝑄1, 𝑄3] (first and third quartiles
of data). We use the logarithmic scale on the y-axis to improve readability. Fitness is
averaged over 30 replications.

Figure 7: Final performance achieved by the different methods (see TABLE 5). Boxes are bounded
in the range [𝑄1, 𝑄3], with the whiskers extending to data within 1.5×(𝑄3−𝑄1). Medians
are indicated with yellow lines. The notation 𝑁𝑆 indicates that the fitness values of the
two considered methods do not statistically differ (Mann-Whitney U test with Bonferroni
correction, 𝑝 > 0.05, see also TABLE 6).

335

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Table 6: Statistical comparison between the considered methods according to the Mann-Whitney
U test with Bonferroni correction, with significant differences indicated in bold. Table is
symmetrical with respect to the main diagonal. The symbol “-” marks the absence of the
corresponding entry. Data is the average of 30 replications of the experiments.

GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
GGA - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6

HC - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6

HC* - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6

OpenAI-ES - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 0.061 0.186
sNES - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6

SSS - < 10−6< 10−6< 10−6 < 10−6< 10−6< 10−6

SSSHC - 0.232
SSSHCa -

SSSHC and SSSHCa succeed in the minimization of test functions, which allows to quickly reduce
fitness (see also FIGURE 6). Instead, GGA, HC, HC*, sNES and SSS fail in finding similar solu-
tions. Interestingly, OpenAI-ES is the only algorithm that manages to discover improved solutions
in the double-pole balancing problem (Kruskal-Wallis H test, 𝑝 < 10−6, see also FIGURE 8 and
TABLE 7).

Figure 8: Analysis of the algorithm performance on the different problems. Black lines mark the
standard deviations. We use the logarithmic scale on the y-axis to improve readability.
Bars denote the average fitness from 30 replications.

Table 7: Performance analysis with regard to 4-bit parity, double-pole balancing, grid navigation
and test function optimization. Bold values correspond to the best outcomes. Data is the
average of 30 replications of the experiments.

Problem GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
4-bit parity 8.233 [2.246] 7.533 [3.052] 8.433 [1.283] 6.633 [1.538] 7.967 [1.329] 7.367 [2.331] 7.800 [1.078] 7.333 [1.300]

Double-pole balancing 994.654 [2.199] 994.275 [2.566] 990.846 [6.199] 778.279 [384.148] 993.963 [2.625] 993.708 [2.394] 971.204 [112.980] 993.163 [2.949]
Grid navigation 325.167 [57.660] 462.075 [48.844] 276.250 [96.566] 306.142 [75.842] 245.008 [69.218] 377.092 [97.762] 253.058 [76.517] 232.800 [82.173]

Test function optimization 1587.770 [223.944] 2878.325 [219.006] 440.385 [81.073] 200.379 [111.980] 542.000 [74.207] 1202.873 [147.151] 191.361 [72.429] 187.136 [79.009]

Lastly, we investigate the performance of the different methods with regard to Ackley, Griewank,
Rastrigin, Rosenbrock and Sphere functions, as illustrated in FIGURE 9 and TABLE 8. Notably,

336

https://jaiai.org/ | August 2025 Paolo Pagliuca.

OpenAI-ES is more effective than other algorithms in optimizing the Rosenbrock function (Kruskal-
Wallis H test, 𝑝 < 10−6), SSS outperforms the others with regard to Rastrigin function (Kruskal-
Wallis H test, 𝑝 < 10−6), SSSHC reaches best performance on the Sphere function (Kruskal-Wallis
H test, 𝑝 < 10−6), whereas SSSHCa bests other algorithms with respect to Ackley and Griewank
functions (Kruskal-Wallis H test, 𝑝 < 10−6). The outcomes reported in TABLE 7 and TABLE 8
underscore the clear advantage of OpenAI-ES, SSSHC and SSSHCa over other methods. HC*
and sNES obtain relatively good results in test function optimization, although they are inferior to
OpenAI-ES, SSSHC and SSSHCa. GGA, HC and SSS achieve poor performance in this context,
particularly concerning the Rosenbrock function (see TABLE 8).

Figure 9: Algorithm performance on the Ackley, Griewank, Rastrigin, Rosenbrock and Sphere test
functions. Boxes are bounded in the range [𝑄1, 𝑄3], with the whiskers extending to data
within 1.5× (𝑄3 −𝑄1). Medians are indicated with yellow lines. We use the logarithmic
scale on the y-axis to improve readability. Data represents the average fitness from 30
replications.

Table 8: Performance analysis with regard to the Ackley, Griewank, Rastrigin, Rosenbrock and
Sphere test functions. Bold values correspond to the best outcomes. Data is the average
of 30 replications of the experiments.

Test function GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
Ackley 4.331 [0.179] 2.652 [0.151] 3.275 [0.304] 1.673 [0.586] 2.900 [0.227] 2.107 [0.184] 1.261 [0.434] 1.254 [0.531]

Griewank 0.765 [0.094] 0.761 [0.147] 0.696 [0.171] 0.217 [0.193] 0.447 [0.185] 0.546 [0.146] 0.181 [0.201] 0.142 [0.167]
Rastrigin 1643.956 [66.687] 138.704 [52.489] 720.609 [100.050] 332.113 [245.317] 1108.064 [99.170] 97.339 [53.305] 202.919 [96.824] 193.670 [106.812]

Rosenbrock 6207.401 [1112.739] 14173.956 [1083.805] 1411.610 [322.264] 650.228 [317.946] 1618.943 [212.284] 5868.017 [702.571] 741.408 [295.443] 728.661 [305.485]
Sphere 82.393 [12.567] 75.548 [7.719] 65.735 [15.735] 17.665 [9.097] 28.012 [7.952] 46.356 [6.654] 11.038 [7.100] 11.953 [9.570]

Overall, the reported analysis clearly reveals a superior performance of OpenAI-ES, SSSHC and
SSSHCa over GGA, HC, HC*, sNES and SSS. This is related to their capability to decrease weights,
as shown in TABLE 9. In particular, the former algorithms evolve controllers with a limited weight
size, which is paramount for the test function optimization. Nevertheless, this tendency prevents the
algorithms from finding effective solutions with respect to the other problems, particularly double-
pole balancing. This is especially true for SSSHC and SSSHCa (see FIGURE 8 and TABLE 7). By
examining the controllers evolved by the different methods, we discovered a positive correlation
between performance and weight size (Spearman correlation, 𝜌 = 0.234, significant at 𝑝 < 0.001),
which further emphasizes the importance of reducing weight size for the discovery of effective

337

https://jaiai.org/ | August 2025 Paolo Pagliuca.

solutions. Interestingly, sNES and SSS have similar weight sizes, but their performance is notably
different. This can be explained by considering that sNES computes the variance for each gene,
which allows the method to identify the modifications that could improve performance. Conversely,
SSS does not adopt similar mechanisms. An analogous consideration can be done with regard
to HC and HC*: the usage of single-gene mutations allows the latter method to discover truly
adaptive modifications, whereas the former algorithm suffers from the potentially disruptive effect
of multiple-gene mutations and gets stuck in local minima solutions.

Table 9: Controller weight size analysis. Data has been computed by considering the absolute value
for each gene and is the average of 30 replications of the experiments.

GGA HC HC* OpenAI-ES sNES SSS SSSHC SSSHCa
0.583 [0.040] 0.428 [0.041] 0.466 [0.083] 0.164 [0.071] 0.265 [0.040] 0.290 [0.042] 0.091 [0.051] 0.096 [0.068]

Regarding SSSHCa, we measured how the number of refinement iterations 𝑁𝑟𝑒 𝑓 𝑠 varies through-
out evolution based on the percentage of non-negative mutations 𝛼𝑚 found during the refinement
process. As can be expected, parameter 𝛼𝑚 decreases as the algorithm improves performance
(FIGURE 10, top), because the possibility to find further adaptive mutations is low. Instead, the
number of refinement iterations 𝑁𝑟𝑒 𝑓 𝑠 tends to increase during evolution (FIGURE 10, bottom).
This is related to the update rule defined in Eq. 15, which fosters a great variability of the parameter
𝑁𝑟𝑒 𝑓 𝑠 even with low values of variable 𝛼𝑚. Future studies could delve into different, and more
effective, techniques to adapt the number of refinement iterations 𝑁𝑟𝑒 𝑓 𝑠.

Figure 10: Analysis of the variation of parameter 𝑁𝑟𝑒 𝑓 𝑠 (bottom figure) depending on the rate of
non-negative mutations 𝛼𝑚 (top figure) throughout the evolution with SSSHCa. Data is
collected from 30 replications.

4. DISCUSSION

The presented results show that three algorithms emerge as more suitable options for the considered
MOO scenario. A noteworthy aspect regards the different level of complexity between OpenAI-ES,

338

https://jaiai.org/ | August 2025 Paolo Pagliuca.

SSSHC and SSSHCa. In fact, the former method exploits mirrored sampling [83] and historical in-
formation to identify the search direction in the space of solutions. Conversely, SSSHC and SSSHCa
arememetic algorithms that seek to refine selected solutions through single-genemutations. Despite
the simplicity, SSSHC and SSSHCa work well in this scenario. However, this approach presents
benefits and drawbacks: on one hand, modifying one gene at a time eliminates the risk of disruptive
effects, since only adaptive mutations are retained. On the other hand, the process does not exclude
failures in the attempt of improving solution performance and is costly with regard to the number
of evaluation steps.

OpenAI-ES has an intrinsic propensity to reduce the size of weights even when weight decay is not
applied, as in the case of our experiments. This turns out to be crucial in the considered domain, as
well as in other domains like swarm robotics [31] and robot locomotion [69]. Conversely, SSSHC
and SSSHCa exploit single-gene mutations performed during refinement to progressively reduce
the weight size.

HC* and sNES achieve relatively good results, although significantly inferior toOpenAI-ES, SSSHC
and SSSHCa. Despite the usage of single-gene mutations, HC* does not manage to properly explore
the search space. A similar consideration can be hold for sNES. This implies that the advantage of
OpenAI-ES, SSSHC and SSSHCa is related to their overall operation, rather than the single tech-
niques incorporated in their implementation. In particular, OpenAI-ES effectively combines sym-
metric sampling and historical information to understand the parametermodifications that could lead
to enhanced performance. On the other hand, SSSHC and SSSHCa balance exploration (through
asexual crossover and random mutations) and exploitation (refinement by means of single-gene
mutations) to improve discovered solutions.

GGA, HC and SSS do not manage to achieve performance comparable to the other algorithms.
Specifically, they fail in discovering effective solutions for test function optimization, particularly
with respect to the Rosenbrock function. This can be explained by considering that GGA, HC
and SSS seek to enhance performance through mutation and crossover operators, and do not have
explicit techniques to reduce weights. As a consequence, they might require longer evolutionary
processes in order to find more effective solutions.

Although the difference in weight size, HC* is remarkably more effective than HC. This reveals that
a pure parameter reduction does not correspond to an optimized performance. Instead, single-gene
mutations allow to identify those parameters that must be modified in order to enhance fitness and
better deal with the MOO scenario.

Another relevant insight regards the types of solutions discovered by the considered EAs. Specifi-
cally, we observe that all the algorithms mainly focus on test function optimization, which allows to
quickly enhance performance, and almost ignore the remaining problems. This is strongly related to
the remarkable different magnitudes of the fitness values in the worst case (see TABLE 10): because
test function optimization is three order of magnitude bigger than double-pole balancing and grid
navigation, performance is minimized when the component 𝐹 𝑓 𝑢𝑛𝑐𝑡 is strongly reduced (see Eq. 12).
As a consequence, the algorithms evolve solutions mostly addressing test function optimization and
do not manage to improve performance with respect to the other objectives.

Overall, our results underscore a non-negligible relationship between problem and algorithm. In
fact, although OpenAI-ES, SSS and SSSHC proved effective at optimizing double-pole balancing

339

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Table 10: Worst fitness value that can be obtained in each considered problem.
4-bit parity Double-pole balancing Grid navigation Test function optimization

16 1000 500 6450690.655

in previous studies [27, 28, 67], the definition of the performance measure for the considered MOO
scenario guides EAs to different evolutionary paths, in which one of the objectives (test function
optimization) dominates the others.

Given the strong dependency of the types of solutions found on the fitness definition, we run a
preliminary investigation on the strategies discovered by HC*, OpenAI-ES, sNES, SSSHC and
SSSHCa (i.e., the most successful algorithms in the MOO scenario) when the fitness functions
defined in Eqs. 1, 2, 3 and 10 are normalized in the range [0.0, 1.0] according to Eqs. 16 - 19.

𝐹𝑝𝑎𝑟𝑖𝑡 𝑦 =
𝐹𝑝𝑎𝑟𝑖𝑡 𝑦

𝑁𝑠𝑡𝑟𝑖𝑛𝑔𝑠
(16)

𝐹𝑑𝑝𝑜𝑙𝑒 =
𝐹𝑑𝑝𝑜𝑙𝑒

𝑁𝑠𝑡𝑒𝑝𝑠
(17)

𝐹𝑔𝑟𝑖𝑑 =
𝐹𝑔𝑟𝑖𝑑

𝐿𝐺 − 1
(18)

𝐹 𝑓 𝑢𝑛𝑐𝑡 =
𝐹 𝑓 𝑢𝑛𝑐𝑡

106 (19)

Concerning Eqs. 16 - 18, the normalization factors 𝑁𝑠𝑡𝑟𝑖𝑛𝑔𝑠, 𝑁𝑠𝑡𝑒𝑝𝑠 and 𝐿𝐺 − 1 ensure that the
normalized fitness functions are bounded in the range [0, 1]. With regard to Eq. 19, the value 106

has been empirically determined by observing the non-normalized performance of solutions found
during the early stages of the evolutionary process.

The results of this analysis are presented in TABLE 11. The fitness normalization removes the
dominating objective (i.e., test function optimization) and enables a more balanced optimization.
Nonetheless, there are differences in the way the considered EAs address the modified MOO sce-
nario: OpenAI-ES succeeds in discovering effective solutions for test function optimization and is
able to enhance its performance on the double-pole balancing. Conversely, the other algorithms
excel at solving 4-bit parity and grid navigation, and manage to find good solutions to test function
optimization. Notably, SSSHC and SSSHCa are signicantly better than HC* and sNES (Mann-
Whitney U test with Bonferroni correction, 𝑝 < 0.001) and also outperform OpenAI-ES, although
there is no statistical difference (Mann-Whitney U test with Bonferroni correction, 𝑝 > 0.05).
FIGURE 11 displays how performance varies throughout the evolution.

Interestingly, the fitness normalization affects the weight size of the evolved controllers (see TA-
BLE 12). In fact, in this case, the performance is negatively correlated with the size of weights

340

https://jaiai.org/ | August 2025 Paolo Pagliuca.

Table 11: Performance of HC*, OpenAI-ES, sNES, SSSHC and SSSHCa when the fitness of single
tasks (defined in Eqs. 1, 2, 3 and 10) is normalized in the range [0.0, 1.0]. Data is averaged
over 30 replications. Best outcomes are shown in bold.

Problem HC* OpenAI-ES sNES SSSHC SSSHCa
4-bit parity 0.008 [0.021] 0.158 [0.171] 0.0 [0.0] 0.010 [0.056] 0.004 [0.016]

Double-pole balancing 0.883 [0.128] 0.506 [0.379] 0.969 [0.096] 0.790 [0.212] 0.801 [0.220]
Grid navigation 0.155 [0.077] 0.375 [0.310] 0.135 [0.043] 0.137 [0.016] 0.138 [0.018]

Test function optimization 0.103 [0.030] 0.033 [0.027] 0.073 [0.017] 0.099 [0.033] 0.095 [0.021]
Total 1.149 [0.166] 1.072 [0.435] 1.178 [0.041] 1.037 [0.212] 1.038 [0.215]

Figure 11: Performance of HC*, OpenAI-ES, sNES, SSSHC and SSSHCa during evolution with
normalized fitness functions (see Eqs. 16 - 19). The shaded areas are bounded in the
range [𝑄1, 𝑄3] (first and third quartiles of data). Fitness is averaged over 30 replications.

341

https://jaiai.org/ | August 2025 Paolo Pagliuca.

(Spearman correlation, 𝜌 = −0.294, significant at 𝑝 < 0.001). Therefore, the usage of normalized
fitness functions drives the EAs towards the discovery of solutions characterized by larger weights
than in the basic MOO scenario (Mann-Whitney U test, 𝑝 < 10−6 for each algorithm), which is
paramount to balance optimization across multiple objectives.

Table 12: Weight size analysis of controllers evolved with normalized fitness. Data has been
computed by considering the absolute value for each gene and is the average of 30
replications of the experiments.

HC* OpenAI-ES sNES SSSHC SSSHCa
1.470 [0.177] 1.167 [0.321] 1.356 [0.061] 1.410 [0.161] 1.419 [0.134]

5. CONCLUSIONS

Multi-Objective Optimization (MOO) concerns the identification of solutions capable of optimizing
multiple conflicting objectives at the same time. Because the discovery of a global optimum is not
trivial, if not impossible, Pareto-optimal solutions are typically taken into account. Evolutionary
Algorithms (EAs) have demonstrated a great ability to deal with MOO scenarios, since they provide
effective solutions without any prior knowledge about the considered domains. A partially related
research field lies in the search for a single controller able to address different problems within the
same class. The main advantage is the possibility of transferring acquired knowledge on a given
problem to others, without further fine-tuning. The approach is similar to transfer learning [84],
which proved valuable in Deep Learning (DL) applications [85–87].

This work delves into the definition of a novel MOO scenario and the analysis of how some state-
of-the-art works address it. Specifically, we compared GGA, HC, HC*, OpenAI-ES, sNES, SSS,
SSSHC and SSSHCa with respect to the evolution of a single neural network controller able to
simultaneously optimize four benchmark problems: (i) 4-bit parity, (ii) double-pole balancing,
(iii) grid navigation, and (iv) test function optimization. The definition of the scenario makes the
overall problem challenging, since the multiple objectives conflict with each other. Furthermore,
the controller is used differently depending on the specific problem: for example, the connection
weights determine the action to be executed in the double-pole balancing or grid navigation prob-
lems, while they represent the input vector for the test functions to be optimized. Outcomes indicate
that OpenAI-ES, SSSHC and SSSHCa best the other algorithms, since they are more effective at
sampling the search space. In particular, OpenAI-ES exploits symmetric sampling and historical
information, whereas SSSHC and SSSHCa benefit from single-gene mutations. Interestingly, rel-
atively trivial algorithms like SSSHC and SSSHCa are not inferior to a modern and sophisticated
method like OpenAI-ES in this context. Instead, SSSHC and SSSHCa are better than OpenAI-
ES with respect to grid navigation and test function optimization, while the opposite is true for
4-bit parity and double-pole balancing. In addition, OpenAI-ES, SSSHC and SSSHCa manage to
reduce weight size more efficiently than GGA, HC, HC*, sNES and SSS, a worthwhile feature
in the considered domain. Lastly, a preliminary investigation on the usage of normalized fitness
functions underscores that fitness normalization highly affects the capability of HC*, OpenAI-ES,
sNES, SSSHC and SSSHCa (i.e., the best EAs in the MOO scenario) to balance optimization across
multiple objectives, and leads to the discovery of solutions characterized by larger weight sizes.

342

https://jaiai.org/ | August 2025 Paolo Pagliuca.

As future research directions, we plan to incorporate algorithms specifically tailored for MOO
domains, such as NSGA-II and VEGA, for future comparisons. This will provide a comprehensive
analysis of the most suitable methods for MOO. Furthermore, modifications of the problem formu-
lation in Eq. 12 will be object of future studies, particularly through the usage of different coefficient
values for the different objectives. In addition, further experiments in which parameter settings are
systematically varied will be performed, aiming to validate our analysis more thoroughly. Finally,
future works could investigate different scenarios (e.g., robotics, classic control) in order to extend
and, possibly, generalize the considerations reported here.

References

[1] Deb K, Sindhya K, Hakanen J. Multi-Objective Optimization. Decision sciences. CRC Press;
2016:145-184.

[2] Censor Y. Pareto Optimality in Multiobjective Problems. Appl Math Optim. 1977;4:41-59.

[3] Kara N, Köçken HG. An Approach for aMulti-Objective Capacitated Transportation Problem.
Encyclopedia of data science and machine learning. IGI Global; 2023:2385-2399.

[4] Deb K. Multi-Objective Optimisation Using Evolutionary Algorithms: An Introduction. In:
Wang L, Ng AH, Deb K, editors. Multi-objective evolutionary optimisation for product design
and manufacturing. Springer; 2011:3-34.

[5] Fonseca CM, Fleming PJ. An Overview of Evolutionary Algorithms in Multiobjective
Optimization. Evol Comput. 1995;3:1-16.

[6] Tan KC, Lee TH, Khor EF. Evolutionary Algorithms for Multi-Objective Optimization:
Performance Assessments and Comparisons. Artif Intell Rev. 2002;17:251-290.

[7] Chafekar D, Xuan J, Rasheed K. Constrained Multi-Objective Optimization Using Steady
State Genetic Algorithms. In: Genetic and evolutionary computation conference. Springer;
2003:813-824.

[8] Coello CA, Lamont GB, Van Veldhuizen DA. Evolutionary Algorithms for Solving Multi-
Objective Problems. Springer; 2007.

[9] Konak A, Coit DW, Smith AE. Multi-Objective Optimization Using Genetic Algorithms: A
Tutorial. Reliab Eng Syst Saf. 2006;91:992-1007.

[10] Alaya I, Solnon C, Ghedira K. Ant Colony Optimization for Multiobjective Optimization
Problems. In: 19th IEEE International Conference on ToolsWithArtificial Intelligence (ICTAI
2007). IEEE. 2007;1:450-457.

[11] Janga Reddy M, Nagesh Kumar DN. An Efficient Multi-Objective Optimization Algorithm
Based on Swarm Intelligence for Engineering Design. Eng Optim. 2007;39:49-68.

[12] Yasear SA, Ku-Mahamud KR. Review of the Multi-Objective Swarm Intelligence Optimiza-
tion Algorithms. J Inf Commun Technol. 2021;20:171-211.

[13] Altiparmak F, Gen M, Lin L, Paksoy T. A Genetic Algorithm Approach for Multi-Objective
Optimization of Supply Chain Networks. Comput Ind Eng. 2006;51:196-215.

343

https://jaiai.org/ | August 2025 Paolo Pagliuca.

[14] Pagliuca P, Vitanza A. Enhancing Aggregation in Locomotor Multi-Agent Systems: A
Theoretical Framework. Proceedings of the 25th Edition of the Workshop From Object to
Agents (WOA24). 2024;3735:42-57.

[15] Pagliuca P, Trivisano G, Vitanza A. How to Evolve Aggregation in Robotic Multi-Agent
Systems. In: Proceedings of the 26th Edition of the Workshop From Object to Agents.
(WOA25). 2025.

[16] Salimans T, Ho J, Chen X, Sidor S, Sutskever I. Evolution Strategies as a Scalable Alternative
to Reinforcement Learning. arXiv preprint arXiv: https://arxiv.org/pdf/1703.03864

[17] Coumans E, Bai Y. Pybullet, a Python Module for Physics Simulation for Games, Robotics
and Machine Learning; 2016.

[18] Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Trans Evol Computat. 2002;6:182-197.

[19] Schaffer JD. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In:
First International Conference on Genetic Algorithms and Their Applications. Psychology
Press; 2014:93-100.

[20] Fonseca CM, Fleming PJ. Multiobjective Optimization and Multiple Constraint Handling
With Evolutionary Algorithms. ii. Application Example. IEEE Trans Syst Man Cybern A.
1998;28:38-47.

[21] Huang W, Mordatch I, Pathak D. One Policy to Control Them All: Shared Modular Policies
for Agent-Agnostic Control. In: International Conference on Machine Learning. PMLR.
2020:4455-4464.

[22] Busetto R, Breschi V, Forgione M, Piga D, Formentin S. One Controller to Rule Them All.
Proceedings of the Machine Learning Research. 2025;1:14.

[23] Dong Q, Li L, Dai D, Ce Z, Ma J, Li R et al. A Survey on In-Context Learning. arXiv preprint
arXiv: https://arxiv.org/pdf/2301.00234.

[24] Grefenstette JJ. Genetic Algorithms for Changing Environments. In: International Conference
on Parallel Problem Solving From Nature (PPSN). 1992;2:137-144.

[25] Rödl V, Tovey C. Multiple Optima in Local Search. J Algor. 1987;8:250-259.

[26] Schaul T, Glasmachers T, Schmidhuber J. High Dimensions and Heavy Tails for Natural
Evolution Strategies. In: Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation. New York, USA: ACM; 2011:845-852.

[27] Pagliuca P, Milano N, Nolfi S. Maximizing Adaptive Power in Neuroevolution. PLOS One.
2018;13:e0198788.

[28] Pagliuca P. Learning and Evolution: Factors Influencing an Effective Combination. AI.
2024;5:2393-2432.

[29] Bäck T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford university press; 1996.

344

https://jaiai.org/ | August 2025 Paolo Pagliuca.

[30] Pagliuca P, Vitanza A. Self-Organized Aggregation in Group of Robots with OpenAI-ES. In:
International Conference on Soft Computing and Pattern Recognition. Springer; 2022:770-
780.

[31] Pagliuca P, Vitanza A. A Comparative Study of Evolutionary Strategies for Aggregation
Tasks in Robot Swarms: Macro- And Micro-Level Behavioral Analysis. IEEE Access.
2025;13:72721-72735.

[32] JMouret JB, Doncieux S. Incremental Evolution of Animats’ Behaviors as a Multi-Objective
Optimization. In: International Conference on Simulation of Adaptive Behavior.Springer;
2008:210-219.

[33] Nolfi S, Parisi D. EvolvingNon-trivial Behaviors on Real Robots: AnAutonomous Robot That
Picks up Objects. In: Congress of the Italian Association for Artificial Intelligence. Springer;
1995:243-254.

[34] Chicano F, Whitley D, Tinós R. Efficient Hill Climber for Multiobjective Evolutionary
Computation in Combinatorial. Optimization. Proceedings, volume. 2016;9595:88.

[35] Díaz R, Suarez AR. A Study of the Capacity of the Stochastic Hill Climbing to Solve Multi-
Objective Problems. In: Proceedings of the Third International Symposium on Adaptive
Systems-Evolutionary Computation and Probabilistic Graphical Models. La Habana: Institute
of Cybernetics, Mathematics and Physics; 2001:37-40.

[36] Liu D, Hohil ME, Smith SH. N-Bit Parity Neural Networks: New Solutions Based on Linear
Programming. Neurocomputing. 2002;48:477-488.

[37] Miller JF. An Empirical Study of the Efficiency of Learning Boolean Functions Using
a Cartesian Genetic Programming Approach. In: Genetic and Evolutionary Computation
Conference. 1999;2:1135-1142.

[38] Youssef A, Majeed B, Ryan C. Optimizing Combinational Logic Circuits Using Grammatical
Evolution. IEEE; 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference
(NILES). 2021:87-92.

[39] Wieland AP. Evolving Neural Network Controllers for Unstable Systems. In: International
Joint Conference on Neural Networks (IJCNN). IEEE; 1991;2:667-673.

[40] Gomez F, Schmidhuber J, Miikkulainen R. Accelerated Neural Evolution Through Coopera-
tively Coevolved Synapses. J Mach Learn Res. 2008;9.

[41] Gruau F,Whitley D, Pyeatt L. A Comparison Between Cellular Encoding and Direct Encoding
for Genetic Neural Networks. In: 1st Annual Conference on Genetic Programming; 1996:81-
89.

[42] Igel C. Neuroevolution for Reinforcement Learning Using Evolution Strategies. In: The 2003
Congress on Evolutionary Computation. IEEE; 2003; 2:2588-2595.

[43] Stanley KO, Miikkulainen R. Evolving Neural Networks Through Augmenting Topologies.
Evol Comput. 2002;10:99-127.

[44] Wierstra D, Schaul T, Glasmachers T, Sun Y, Peters J, et al,. Natural Evolution Strategies. J
Mach Learn Res. 2014;15:949-980.

345

https://jaiai.org/ | August 2025 Paolo Pagliuca.

[45] Elshahed A, Bin Majahar Ali MK, Mohamed AS, Abdullah FA, Aun TL. Efficient Pathfinding
on Grid Maps: Comparative Analysis of Classical Algorithms and Incremental Line Search.
IEEE Access. 2025;13:98473-98484.

[46] Heng H, Rahiman W. Aco-Ga-Based Optimization to Enhance Global Path Planning for
Autonomous Navigation in Grid Environments. IEEE Trans Evol Computat. 2025.

[47] Miglino O,Walker R. Genetic Redundancy in Evolving Populations of Simulated Robots. Artif
Life. 2002;8:265-277.

[48] Adabor ES, Ackora-Prah J. A Genetic Algorithm on Optimization Test Functions. Int J Mod
Eng Res. 2017;7:1-11.

[49] Pagliuca P. Analysis of the Exploration-Exploitation Dilemma in Neutral Problems with
Evolutionary Algorithms. J Artif Intell Auton Intell. 2024;1:110-121.

[50] Song Y, Wang F, Chen X. An Improved Genetic Algorithm for Numerical Function
Optimization. Appl Intell. 2019;49:1880-1902.

[51] Nolfi S, Parisi D. Learning to Adapt to Changing Environments in Evolving Neural Networks.
Adapt Behav. 1996;5:75-98.

[52] Vavak F, Fogarty TC. Comparison of Steady State and Generational Genetic Algorithms
for Use in Nonstationary Environments. In: IEEE International Conference on Evolutionary
Computation. IEEE; 1996:192-195.

[53] Baldassarre G, Trianni V, Bonani M, Mondada F, Dorigo M, et al. Self-Organized Coordinated
Motion in Groups of Physically Connected Robots. IEEE Trans Syst Man Cybern B Cybern
(Cybernetics). 2007;37:224-239.

[54] Groß R, DorigoM. Towards Group Transport by Swarms of Robots. Int J Bio Inspired Comput.
2009;1:1-13.

[55] Trianni V, Groß R, Labella TH, Şahin E, Dorigo M. Evolving Aggregation Behaviors in a
Swarm of Robots. In: European Conference on Artificial Life. Springer; 2003:865-874.

[56] Trianni V, Nolfi S. Self-Organizing Sync in a Robotic Swarm: A Dynamical System View.
IEEE Trans Evol Computat. 2009;13:722-741.

[57] Pagliuca P, Inglese D, Vitanza A. Measuring Emergent Behaviors in a Mixed Competitive-
Cooperative Environment. Int J Comput Inf Syst Ind Manag Appl. 2023;15:69-86.

[58] Pagliuca P, Vitanza A. N-Mates Evaluation: A New Method to Improve the Performance of
Genetic Algorithms in Heterogeneous Multi-Agent Systems. Proceedings of the 24th Edition
of the Workshop from Object to Agents (WOA23). 2023;3579:123-137.

[59] Pagliuca P, Vitanza A. The Role of N in the N-Mates Evaluation Method: A Quantitative
Analysis. In: Artificial Life Conference (ALIFE 2024). MIT Press; 2024:812-814.

[60] Pagliuca P, Favia M, Livi S, Vitanza A. Conceptualizing Evolving Interdependence in Groups:
Insights from the Analysis of Two-Agent Systems. In: 21st International Conference on
Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT); 2025.

346

https://jaiai.org/ | August 2025 Paolo Pagliuca.

[61] Pagliuca P, Favia M, Livi S, Vitanza A. Interdipendenza Nei Gruppi: Esperimenti Con Robot
Sociali. Sistem Intell. 2025;37:335-355.

[62] Floreano D,Mondada F. Evolution of Homing Navigation in a Real Mobile Robot. IEEE Trans
Syst Man Cybern B Cybern (Cybernetics). 1996;26:396-407.

[63] Nolfi S. Evolving Non-Trivial Behaviors on Real Robots: A Garbage Collecting Robot. Robot
Auton Syst. 1997;22:187-198.

[64] Nolfi S, Marocco D. Evolving Robots Able to Integrate Sensory-Motor Information Over
Time. Theor Biosci. 2001;120:287-310.

[65] Pagliuca P, Yuri Inglese DY. The Importance of Functionality Over Complexity: A
Preliminary Study on Feed-Forward Neural Networks. In: Esposito A, Faundez-Zanuy
M, Morabito FC, Pasero E, Cordasco G, editors. Advanced Neural Artificial Intelligence:
Theories and Applications. Springer; 2025:447-458.

[66] Pagliuca P, Milano N, Nolfi S. Efficacy of Modern Neuro-Evolutionary Strategies for
Continuous Control Optimization. Front Robot AI. 2020;7:98.

[67] Pagliuca P, Nolfi S, Vitanza A. Evorobotpy3: A Flexible and Easy-to-Use Simulation Tool
for Evolutionary Robotics. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2025 Companion). New York, USA: ACM; 2025:155-158.

[68] Nolfi S, Pagliuca P. Global Progress in Competitive Co-Evolution: A Systematic Comparison
of Alternative Methods. Front Robot AI. 2024;11:1470886.

[69] Pagliuca P, Nolfi S. The Dynamic of Body and Brain Co-Evolution. Adapt Behav.
2022;30:245-255.

[70] Rais Martínez J, Aznar Gregori F. Comparison of Evolutionary Strategies for Reinforcement
Learning in a Swarm Aggregation Behaviour. In: 3rd International Conference on Machine
Learning and Machine Intelligence; 2020:40-45.

[71] Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 2014. arXiv Preprint arXiv:
https://arxiv.org/pdf/1412.6980.

[72] Krogh A, Hertz J. A Simple Weight Decay Can Improve Generalization. Adv Neural Inf
Process Syst. 1991;4.

[73] Pagliuca P, Nolfi S. Robust Optimization Through Neuroevolution. PLOS One.
2019;14:e0213193.

[74] Aldana-Franco F, Montes González F, Nolfi S. Evolutionary Utility of Emerging Communica-
tion Systems and Signal Complexity in Robotics. Int J CombOptim Probl Inform. 2024;15:15-
27.

[75] Respall VM, Nolfi S. Development of Multiple Behaviors in Evolving Robots. Robotics.
2020;10:1.

[76] Cotta C. Harnessing Memetic Algorithms: A Practical Guide. TOP. 2025;33:327-356.

[77] Moscato P, Cotta C, Mendes A. Memetic Algorithms. New Optim Tech Eng. 2004;141:53-85.

347

https://jaiai.org/ | August 2025 Paolo Pagliuca.

[78] Neri F, Cotta C, Moscato P. Handbook of Memetic Algorithms. Springer; 2011;379.

[79] Elman JL. Finding Structure in Time. Cogn Sci. 1990;14:179-211.

[80] Massera G, Ferrauto T, Gigliotta O, Nolfi S. FARSA: An Open Software Tool for Embodied
Cognitive Science. In: Artificial Life Conference; 2013:538-545.

[81] Aldana-Franco F, Montes-González F, Nolfi S. Improvement of Signal Communication for a
Foraging Task Using Evolutionary Robotics. J Appl Res Technol. 2024;22:90-101.

[82] Pagliuca P, Nolfi S. Integrating Learning by Experience and Demonstration in Autonomous
Robots. Adapt Behav. 2015;23:300-314.

[83] Brockhoff D, Auger A, Hansen N, Arnold DV, Hohm T. Mirrored Sampling and Sequential
Selection for Evolution Strategies. In: International Conference on Parallel Problem Solving
From Nature. Springer; 2010:11-21.

[84] Torrey L, Shavlik J. Transfer Learning. In: Olivas ES, Guerrero JD, Martinez-Sober M,
Magdalena-Benedito JR, Serrano López AJ, editors. Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI Global;
2010:242-264.

[85] Kandel I, Castelli M. Transfer Learning With Convolutional Neural Networks for Diabetic
Retinopathy Image Classification: A Review. Appl Sci. 2020;10:2021.

[86] Pagliuca P, Zribi M, Tufo G, Pitolli F. The Trade-Off Between Efficiency, Sustainability and
Explainability: A Comparative Study on the Quality Control of Laboratory Consumables. In:
International Joint Conference on Neural Networks (IJCNN). IEEE; 2025.

[87] Zribi M, Pagliuca P, Pitolli F. A Computer Vision-Based Quality Assessment Technique for the
Automatic Control of Consumables for Analytical Laboratories. Expert Syst Appl. 2024;256

348

	INTRODUCTION
	MATERIALS AND METHODS
	Problems
	4-bit parity
	Double-pole balancing
	Grid navigation
	Test function optimization

	Performance
	Evolutionary Algorithms
	GGA
	HC and HC*
	OpenAI-ES
	sNES
	SSS
	SSSHC and SSSHCa

	Controller
	Simulator and Experimental Settings

	RESULTS
	DISCUSSION
	CONCLUSIONS

